Adaptive Playout Policies for Monte-Carlo Go

نویسنده

  • Hendrik Baier
چکیده

xiii

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analyzing Simulations in Monte-Carlo Tree Search for the Game of Go

In Monte Carlo Tree Search, simulations play a crucial role since they replace the evaluation function used in classical game tree search and guide the development of the game tree. Despite their importance, not too much is known about the details of how they work. This paper starts a more in-depth study of simulations, using the game of Go, and in particular the program Fuego, as an example. P...

متن کامل

Playout Policy Adaptation for Games

Monte Carlo Tree Search (MCTS) is the state of the art algorithm for General Game Playing (GGP). We propose to learn a playout policy online so as to improve MCTS for GGP. We test the resulting algorithm named Playout Policy Adaptation (PPA) on Atarigo, Breakthrough, Misere Breakthrough, Domineering, Misere Domineering, Go, Knightthrough, Misere Knightthrough, Nogo and Misere Nogo. For most of ...

متن کامل

Efficient Sampling Method for Monte Carlo Tree Search Problem

We consider Monte Carlo tree search problem, a variant of Min-Max tree search problem where the score of each leaf is the expectation of some Bernoulli variables and not explicitly given but can be estimated through (random) playouts. The goal of this problem is, given a game tree and an oracle that returns an outcome of a playout, to find a child node of the root which attains an approximate m...

متن کامل

A Parallel Monte-Carlo Tree Search Algorithm

Monte-Carlo tree search is a powerful paradigm for the game of Go. We present a parallel Master-Slave algorithm for Monte-Carlo tree search. We experimented the algorithm on a network of computers using various configurations: from 12,500 to 100,000 playouts, from 1 to 64 slaves, and from 1 to 16 computers. On our architecture we obtain a speedup of 14 for 16 slaves. With a single slave and fiv...

متن کامل

Small and Large MCTS Playouts Applied to Chinese Dark Chess Stochastic Game

Monte-Carlo tree search is a powerful paradigm for full information games. We present various changes applied to this algorithm to deal with the stochastic game Chinese Dark Chess. We experimented with group-nodes and chance-nodes using various configurations: with different playout policies, with different playout size, with true or evaluated wins. Results show that extending playout size over...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010